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Abstract

The methodology used by the First Street Foundation Wildfire Model (FSF-WFM) to compute
estimates of the 30-year, climate-adjusted aggregate wildfire hazard for the contiguous United
States at 30 meter horizontal resolution is presented. The FSF-WFM integrates several existing
methods from the wildfire science community and implements computationally efficient and
scalable modeling techniques to allow for new high-resolution, CONUS-wide hazard generation.
Burn probability, flame length, and ember spread for the years 2022 and 2052 are computed
from two 10-year representative Monte Carlo simulations of wildfire behavior, utilizing
augmented LANDFIRE fuels estimates updated with all available disturbance information.
FSF-WFM utilizes ELMFIRE, an open-source, Rothermel-based wildfire behavior model, and
multiple US Federal Government open data sources to drive the simulations. LANDFIRE
non-burnable fuels classes within  the Wildland Urban Interface (WUI) are replaced with fuel
estimates from machine-learning models trained on data from historical fires to allow the
propagation of wildfire through the WUI in the model. Historical wildfire ignition locations and
NOAA’s hourly time series of surface weather at 2.5km resolution are used to drive ELMFIRE to
produce wildfire hazards representative of the 2022 and 2052 conditions at 30 m resolution, with
the future weather conditions scaled to the IPCC CMIP5 RCP4.5 model ensemble predictions.
Winds and vegetation were held constant between the 2022 and 2052 simulations, and climate
change’s impacts on the future fuel conditions are the main contributor to the changes observed
in the 2052 results. Nonzero wildfire exposure is estimated for 71.8 million out of 140 million
properties across CONUS.  Climate change impacts add another 11% properties to this
non-zero exposure class over the next 30 years, with much of this change observed in forested
areas east of the Mississippi River. “Major” aggregate wildfire exposure of greater than 6% over
the 30 year analysis period from 2022-2052 is estimated for 10.2 million properties. The
FSF-WFM represents a notable contribution to the ability to produce property-specific,
climate-adjusted wildfire risk assessments in the US.

Introduction

The threat of increasing wildfire risk across the United States has been described by a number
of studies that discuss both the increasing incidence of wildfire and the increasing threat to
forests and communities [1-3]. The implications of this growing risk threaten the economic
stability, natural resources, and quality of life for the affected communities and local residents,
and there are a number of resources (e.g. https://wildfireresearchcenter.org/;
https://wildfirerisk.org/) now available to assist communities in meeting those growing risks.
Westerling et al. [2] report that land management costs already exceeded $1 billion in costs
nearly 10 years ago, however, a report from the Bureau of Land Management (BLM) and the
Western Forestry Leadership Coalition (WFLC) highlighted the fact that this direct cost is simply
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a fraction of the larger economic costs of wildfire [4]. The WFLM report highlighted the fact that,
beyond the direct dollars spent on land management and suppression, there are additional
direct costs (such as firefighting crews), indirect costs (extensive and long term implications of
lost tax revenue, land recovery, and dips in property value), rehabilitation costs (watershed
restoration, short term emergency loans, etc.), and additional uncharacterized costs (including
human costs). The report estimates that the cost of wildfires reported through direct costs may
only account for about 3% of all costs incurred from wildfires In fact, NOAA reports over $79.8
billion in costs associated with the occurrence of wildfires between the most recent 5 year
period of recorded events (2018 and 2021), not accounting for much of the cost associated with
land management or long term indirect and additional costs [5]. While the costs of wildfire are
exceedingly high in recent years, it is also growing at a rate that indicates its increasing impact
on communities in the US with the cost of the preceding 5 years of economic damages totaling
only $8.5 billion (2012-2016) [5]. This increase in damages is nearly 10-fold and represents the
growing risk to communities, and residents in those communities. A number of commercial fire
risk products have been made developed and are in wide use in the insurance industry (e.g.
Verisk’s “FireLine”
https://www.verisk.com/siteassets/media/downloads/underwriting/location/location-fireline.pdf),
but these are statistically-based solely upon past fires and related damages.

The growing risk has been linked to a series of different drivers in the literature.  Some
explanations have drawn on anthropogenic changes in industry associated latent consequences
such as forest regrowth following a decline in logging in the late 19th century which allowed for
structural changes to the biomass (fuels) in those areas driven by the lack of the natural
regulation from regularly occurring fires [2].  Competing explanations focus on the impact of
variability in climate conditions associated with increasing risk of wildfire, including increasing
variability in moisture conditions, increasing drought frequency, and warming temperatures [6].
Finally, these explanations are further compounded by the fact that the areas most at risk of
wildfires in direct relation to residential land uses have grown extensively in the recent past [7].
This interface, referred to as the Wildlands Urban Interface (WUI), has seen significant growth in
the last 20 years with Radeloff and colleagues reporting about an 8% growth in WUI area and a
nearly 35% growth in population and housing units.  In total, the research reports that half of all
homes built in the 1990s, and about 40% in the 2000s, were built in the WUI. Recent statistical
analyses at the property-level have shown that 97% of home losses are found in the WUI [8].
Such rapid growth in high risk areas means that even more properties are at risk of wildfire.
Beyond the impact on magnitude, the larger WUI populations simply mean there is more
opportunity for fire as the vast majority are ignited by human cases [9].

In response to the need to respond to this growing nationwide risk at the community level, the
U.S. Federal Government supported the creation and publication of the publicly-available
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Wildfire Risk to Communities (hereafter WRC; see WildfireRisk.org) [10], which conveys the
relative risk for communities based on a 270m horizontal resolution analysis. The tool is
primarily intended to provide insight for community level wildfire solutions in a way that allows
for communities to understand their relative risk comparatively with other areas so that
resources can be allocated in a measured and efficient way, with the goal of combating
economic and human loss from wildfires. Wildfire Risk to Communities’ estimates are based on
fire simulations that incorporate the US Forest Service’s 2014 Landscape Fire and Resource
Management Planning Tools database v2.0.0 [11] with some modifications (Smail, personal
comm. 2021) which provides open data describing the composition and state of fuels across the
contiguous United States (CONUS). However, WRC’s focus is on community risk and actions to
reduce those risks, and the metrics computed are not focused on individual properties and
homes, nor does WRC include the impacts of climate change on future risk.

The development of the WRC tool served as a milestone in giving communities the ability to
assess risk in their area and plan for resource allocation in relation to that risk.  However, the
developers of the tool acknowledge that it is a community level tool and should be used for
community level purposes. This research aims to build upon the wildfire community’s
considerable research on wildfire risk modeling [12], and to complement WRC community level
tool with a high resolution model developed specifically for the property level at a national scale,
the First Street Foundation-Wildfire Model (FSF-WFM). Given the increase in wildfire
occurrence and the subsequent economic consequences [13], there remains a need to quantify
the probable changes in wildfire exposure for US property owners and residents to provide to
them an improved awareness of their specific, property-level, wildfire risk now and their
expected risk in the future. The use of wildfire hazard estimates to provide property-level
vulnerability estimates has been demonstrated in numerous studies [e.g. 14, 15]. As the number
of communities in the built environment suffering extensive losses grows (e.g. losses in the WUI
exemplified by Gatlinburg, TN 2016; Paradise, CA 2018; Grand County, CO 2020; Boulder
County, CO 2021) there is also a recognized need to describe the spread and risk of wildfire
specifically within the WUI [16]. The development of such a model is based on the unique risk
each individual property faces, based on property-level characteristics, and can be scaled
nation-wide to provide homeowners mitigation solutions, such as those included in the
“resilience pathways” described in [17].

Building upon the WRC approach, the LANDFIRE database, climate projections, and existing
open-source fire behavior models, the remainder of this document is designed to provide a
transparent understanding of the framework and methodology that went into the development of
the property-level wildfire model taking an open science approach
(https://earthdata.nasa.gov/esds/open-science). In the development of the model, we make
extensive use of U.S. Federal Government open data as a basis for the necessary foundational
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topography, fuels, weather, climate, and historical disturbances information, additional data were
added from a variety of state and local wildfire and land management sources to facilitate both a
high resolution (30m horizontal) and future-facing (estimates both for today and for 30 years
ahead) product that will allow individuals, communities, businesses, and governments to
understand and prepare for their property-level wildfire risk in the face of a changing climate.
The method described in this manuscript creates such useful information products for wildfire in
the United States, from the ways in which current fuels layers may be estimated and updated
from available data, weather data may be used for past and predictions of future weather
conditions, and how wildfire ignition and behavior may be modeled at a high resolutions across
CONUS.

This study does not attempt to provide quantitative comparisons between the outputs of the
FSF-WFM and the WRC approaches. While comparisons may be useful in understanding the
nuances of the fuels used and model implementations, any direct quantitative estimates of the
differences are difficult to interpret, not just due to those differences, but also because the
models were developed with different purposes in mind. Direct quantitative comparisons with
the aforementioned property-level statistical models typically used in insurance applications may
be useful since they are more similar in purpose - but due to the proprietary nature of  and costs
associated with those models’ outputs, the authors do not currently have access to those
outputs at a sufficiently large scale to conduct such a comparison. Any such comparisons of
results may be the subject of a future study, but would specifically be a comparison of
methodological differences of scale and purpose versus a comparison of accuracy of the
models. To that point, the model described in this paper is specifically designed to measure
property risk and should be thought of as complementary to the larger community risk products.

Model Development

The FSF-WFM approach is based on the application of a fire behavior model to explore the
incidence, severity, and probability of wildfire occurring at a property-level resolution across
CONUS. This general approach has been shown to be useful at large scales in the
aforementioned WRC using FSim [18], and on regional scales such as the use of WyoFire [19].
Here we use an open source wildfire behavior model, ELMFIRE (Eulerian Level Set Model of
Fire Spread), which has likewise been shown to produce useful results in this type of application
[20], but also extend its use to estimate future wildfire hazards based on climate predictions.

The development of the FSF-WFM includes a series of steps associated with the integration of
Fuels, Fire Weather, and Ignition Locations into ELMFIRE.  While each of these components will
be explained in detail below, a definition/purpose of each component as they relate to the
wildfire model is provided here for context.
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● Fuels: estimate the fuels that support wildfires across the US at 30m horizontal
resolution, including assembly of new fuel estimates updated with disturbance
descriptions for the prior 10 years and the conversion of buildings within the WUI into a
burnable fuel type that allows the appropriate progression of wildfire throughout the WUI
in the fire behavior model.

● Fire Weather: assemble weather data to drive the fire behavior model under a
representative range of fire weather conditions for 2022 and 2052. Fire weather was
derived from the National Oceanic and Atmospheric Administration’s (NOAA’s) surface
weather reanalysis for 2011-2020 to create the 2022 hazard layers, and was driven by
the same time series in 2052 with air temperature, precipitation, and humidity scaled to
2052 conditions as represented by downscaled International Panel on Climate Change
(IPCC) climate model ensemble results.

● Ignition locations: identify likely ignition locations, temporal fire occurrence patterns, and
conditions most likely for fire spread for future wildfires.

● Fire behavior model: apply a fire incidence and landscape behavior model across the
contiguous United States in a Monte Carlo simulation to build probabilistic estimates of
2022 and 2052 wildfire hazards in terms of burn likelihood, fire intensity, and spread of
embers at 30 meter horizontal resolution.

The resulting wildfire hazards product is based on the data sources listed which were used to
update the data to May 2021 (See Appendix A).

Fuels

The wildfire hazard estimate is heavily dependent upon estimates of the type, quantity, age, and
condition of the combustible fuels across the US. Version 2.0.0.0 of the canonical U.S. Forest
Service (USFS) LANDFIRE [11] fuels dataset at 30m horizontal resolution is utilized as a
baseline for provision of this fuels information, and is updated to characterize risk in the present
through the inclusion of all known disturbances from to May 2021 to create a current fuels layer
useful for assessing wildfire risk for the year 2022. Note that not all disturbances were able to be
adequately known or described, and different US states exhibit different levels and styles of
reporting. States with the highest fire risk in the Western and Southeastern US (e.g. California,
Oregon, Arizona, Colorado, Washington, Idaho, and New Mexico) were prioritized to ensure
their adequate inclusion in this study. These disturbances were incorporated as changes to
surface and canopy fuels by modifying the geographically referenced LANDFIRE classifications,

FirstStreet.org 6

https://firststreet.org/


and include recent wildfires, prescribed burns, harvests, and other forest management practices
as reported by the data sources listed in Appendix B. Modification of the fuel descriptions was
done in accordance with the LANDFIRE fuels classes and methodologies, and is congruent with
the LANDFIRE disturbance code schema, which consists of thematic three-digit code values
corresponding to disturbance type, severity, and time since disturbance, respectively per the
LANDFIRE Fuel Disturbance Attribute Data Dictionary [21]. A representation of the processes is
shown in Figure 1 that describes the methods used to create the fuels estimate for this study.

[FIGURE 1 ABOUT HERE]

Disturbances

Disturbances from wildfires across CONUS were incorporated by using data shared by the
Monitoring Trends in Burn Severity (MTBS) [22] program, which maps the burn severity and
extent of large fires across all lands in the US. At the time of analysis, the MTBS dataset
included fires of an area larger than 500 acres through 2019. Therefore, for the year 2020 the
MTBS dataset was augmented with data from all fires of size <500 acres from the National
Interagency Fire Center (NIFC).

To ensure the consistency of fire severity characterizations between the MTBS and NIFC
datasets, burn severity was informed by calculating the Normalized Burn Ratio (NBR) [23] for
one pre-fire and one 90-day-window post-fire cloud-filtered composite image corresponding to
each fire. The pre-fire NBR was then subtracted from the post-fire NBR to create the Relative
Difference Normalized Burn Ratio (RdNBR) index [23].  “Miller’s threshold” [23] was then applied
to the RdNBR image to create a five-class burn severity classification.

For non-wildfire disturbances including harvest, fuel mitigation treatments, and prescribed
burns, there are no uniform naming or reporting conventions for forest management practices
across the U.S. and the quality of data entry varies considerably from state to state. To ensure
that every feature is assigned a standardized disturbance class, all unique treatment names
from every dataset were compiled for review by forestry field experts who are included in the
authorship of this paper. Each unique disturbance name in the document was assigned a
LANDFIRE disturbance type, and assigned the appropriate three digit LANDFIRE disturbance
code that captures disturbance types, severity, and time since disturbance. A distribution
associated with the types and severity of disturbances is reported in Table 1.

[TABLE 1 ABOUT HERE]
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The disturbance types most frequently found in our dataset and listed in Appendix B were Fire
(Disturbance Type 1), Mechanical Add (Disturbance Type 2, when fuels are mechanically
mowed or chipped and transitioned to surface fuels), and Mechanical Remove (Disturbance
Type 3, when fuels are removed via cutting, felling, burning, or harvest). We assigned a
disturbance type “other” (Disturbance Type 8) to chemical treatments and grazing. We excluded
treatments or activities included in the datasets that would not have impacted fuels (including
but not limited to seeding, habitat restoration, and invasive species removal). Treatment
disturbances such as hand thinning, piling, prescribed fire, and other treatments where canopy
cover is not altered were assigned a disturbance value of 1 (low severity);  mechanical thinning
and harvest were assigned a disturbance value of 2 (medium severity); and clear cuts were
assigned a disturbance value of 3 (high severity). For wildfire disturbances, we followed the
MTBS conventions whereby fire severity class 2 are low severity, 3 are medium severity, and 4
are high severity classifications. Classes 1 (unburned/unchanged) and 5 (increased greenness)
were considered undisturbed. The code for time-since-disturbance was determined based on
the year of treatment and the LANDFIRE zone. Time-since-disturbance was categorized as 1
(disturbances that occurred in 2020), 2 (disturbances that occurred in 2015-2019), and 3
(disturbances that occurred in 2011-2014). Due to differences in overall fire risk topographies,
for disturbances that occurred in the LANDFIRE Southeast Super Zone (Zones 46, 55, 56, 58,
and 99), the time-since-disturbance categories are 1 (disturbances that occurred in 2020), 2
(disturbances that occurred in 2017-2019), and 3 (disturbances that occurred in 2011-2016).
Finally, the treatment and wildfire layers were combined into a single disturbance layer using a
priority ranking ruleset informed by LANDFIRE analysts (Smail, personal comm. 2021) to ensure
the most fuels-relevant disturbance value is assigned in cases of spatial overlap.

Validation at CONUS scale is most practically accomplished with remote sensing techniques.
The Hansen Global Forest Change dataset [24] provides a ‘loss year’ band representing the
year(s) when there was detectable canopy loss during the period 2000 - 2020 at the 30m per
pixel scale. We leveraged this band to create a forest loss bitmask for 2011-2020 and applied it
to screen our final aggregate disturbance layer to remove false positives of moderate and high
severity harvest [24].

Fuel layers

Using LANDFIRE v2.0.0 as the base, four canopy fuel layers (canopy cover, canopy height,
canopy base height, canopy bulk density) and one surface fuel layer (40 Scott and Burgan Fire
Behavior Fuel Model, hereafter FM40) [25] were generated with an effective year of 2021 for
use as inputs into the fire models. Fuels were only transitioned in areas that were disturbed
between 2011 and 2020. Initial layers representing lookup rulesets in the LANDFIRE Total Fuel
Change Tool (LFTFCT) database were generated. First, canopy cover and height midpoint
layers are derived from the LANDFIRE  Fuel Vegetation Cover (FVC) and Fuel Vegetation
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Height (FVH) rasters based on the LFTFCT lookup table values. Next, using the new updated
Disturbance layer, a Canopy Guide layer was generated by using the LFTFCT master lookup
table applied to unique combinations of the disturbance code, Biophysical Settings (BPS), Fuel
Vegetation Cover (FVC), Fuel Vegetation Height (FVH), and Fuel Vegetation Type (FVT). The
four canopy fuel layers are then generated using a regression equation:

(1) 𝐶𝑎𝑛𝑜𝑝𝑦 𝐹𝑢𝑒𝑙 = 𝐶
𝑋

 + 𝐻
𝑦
 + 𝑏

where C is the canopy cover midpoint, H is the canopy height midpoint, x and y are scale
factors, and b is an intercept value derived from a lookup of unique disturbance code and FVT
combinations from the LFTFCT lookup table.  For canopy cover and canopy height regressions,
the cover and height midpoint values are derived from the initial FVC and FVH midpoint layers
described above, while for canopy base height and canopy bulk density, the midpoint values are
derived from the new canopy cover and height layers that were generated in the step described
above. Additionally, canopy bulk density uses a ruleset to create two stand height coefficients
from the canopy height midpoint value for pixels following the rules described in [26]. Each
canopy fuel regression output is post-processed to ensure values are within the LFTFCT’s valid
value range (CC: 0-95; CH: 0-510; CBH: 0-100; CBD: 0-45), scaled properly, and binned, if
necessary, to defined midpoint values [21]. Finally, the LFTFCT Canopy Guide layer is applied
to each layer using rulesets based on canopy cover thresholds [21].

The FM40 surface fuels estimates are generated in the same way as the canopy guide, using
the LFTFCT master lookup table applied to unique combinations of the disturbance code, BPS,
FVC, FVH, and FVC. Products generated include the necessary LANDFIRE fuel and vegetation
datasets for the workflow described here, derived fire severity, canopy cover and canopy height
midpoint, as well as disturbance estimates. Included with the 2021 fuel profile used in this study
are five updated 2021 fuel layers: FM40, Canopy Cover (CC), Canopy Height (CH), Canopy
Base Height (CBH), and Canopy Bulk Density (CBD). Figure 2 highlights the spatial location of
the canopy and surface fuel updates across the CONUS with Figure 3 highlighting the update of
surface fuels in a more local context.

[FIGURES 2 & 3 ABOUT HERE]

WUI surface fuel updates

Typically, homes and other buildings in the built environment, including the WUI, are classified
as nonburnable fuels within LANDFIRE. However, in order to allow the estimate of wildfire
hazard within the WUI under the full range of fire weather conditions, those properties within the
WUI need to be replaced by a burnable fuel estimate to permit the wildfire behavior model to
estimate how wildfire could move through the WUI more accurately.
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The first step of developing the WUI fuel model was to derive a current map of WUI areas. WUI
areas are defined by two factors: building density and the distance from wildland vegetation
[27]. We used the 2016 NLCD Existing Vegetation Cover layer to identify areas of wildland
vegetation, and derived our own building-density layer from MapBox building footprints
(Appendix A), following evidence from Caggiani et al. [8] that such higher-resolution analyses
enables more precise evaluations of wildfire risk. The WUI influence zone, WUI intermix, and
WUI interface layers were defined following [16] as:

● Influence zone is >75% land coverage of wildland vegetation within 1 miles of a
residence.

● Intermix is >1 residence per 40 acres and groups of residences larger than 50 acres with
>50% land coverage of wildland vegetation.

● Interface is defined as >1 residence per 40 acres and groups of residences larger than
50 acres with <50% land coverage of wildland vegetation, and within 1 miles of wildland
vegetation.

Non-burnable pixels were converted to a burnable FM40 fuel type in the WUI intermix and
interface only, as much of the WUI influence zone is already estimated as burnable in
LANDFIRE and does not need to have non-burnable cells converted to burnable to enable the
fire behavior model in those areas. Any unnecessary conversions within the influence zone
could potentially bias fire behavior by changing the FM40 fuel types in those areas.

[FIGURE 4 ABOUT HERE]

Properties within the WUI with a nonburnable classification in the 2021 fuel profile were
replaced by an effective fuel type by estimating it from a statistical analysis of 549 historical fire
perimeters in the WUI from 2014-2019 (See Appendix D). These past fires were used to train a
Random Forest machine learning algorithm to predict the appropriate fuel classification. Note
that the fuel layers do not take into account fuel estimates for the structures themselves in the
WUI that could lead to increased house-to-house ignition probability; such an approach could be
incorporated into a future effort.  To convert non-burnable pixels in the WUI intermix and
interface to allow the fire behavior model in those regions, we used a machine learning
approach described below.

The 2021 FM40 fuel types derived in the fuels workflow (see Figure 1) described above are
used as the response variable. The training and testing dataset was composed of pixels in the
WUI intermix and interface that were within fire perimeters from our disturbance dataset
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(2011-2020) or within a 1km buffer around the fire perimeter, in order to capture areas that
remained unburned in those incidents. Other variables included vegetation products from
LANDFIRE v2.0.0 [11], Landsat data derived from 4-month composites encompassing each
training fire’s ignition date (Coastal, Blue, Green, Red, NIR, NDVI, SWIR1, SWIR2, NDVI,
MNDWI, BAI), GRIDMET data derived from 1-month composites encompassing each training
fire’s fire ignition date (tmin, tmax, fm1000, vs, mndwi, erc, bi), topography variables from USGS
(slope, elevation, aspect), building density per 1 km2, the number of structures destroyed per
fire, and fire severity. A random-forest model was trained only on burnable FM40 categories.
The prediction area was limited to 2021 FM40 urban/developed (FM40 class 91) and
Agricultural (FM40 class 93) in the WUI intermix and interface. We ran a stratified k-fold cross
validation training using 10 folds for each dataset, with the training data split 80%-20% in each
run. The best model had a k-fold training accuracy of 73.0% with a mean precision (true
negative rate) of 76.4% and a mean recall (true positive rate) of 73.0%. Overall, k-fold training
had a mean model accuracy of 71.2% (68.7% - 73.7% confidence interval). The overall training
accuracy was 96.9% with a training Kappa coefficient of 96.8%. For model testing, 30% of
sampled data was withheld. The independent validation dataset showed 71.7% accuracy with a
testing Kappa coefficient of 73.0%. A framework for documenting the classification process to
replace non-burnable FM40 classes with burnable classes in the newly defined WUI is
presented in Figure 4 with feature importance highlighted in Figure 5.

[FIGURE 5 ABOUT HERE]

Overall, the vegetation, topographic, and weather variables had higher importance than the
fire-related or building density-related variables in the model (Figure 5). In general,
non-burnable WUI intermix and interface pixels were frequently replaced with grass or
grass-shrub fuel types (FM40 classes 101 and 121, and occasionally 103 in the Southeast and
183 in the Mid-atlantic). The predicted pixels were replaced in the 2021 FM40 fuel layer to
create the final 2021 FM40 with the surface fuel model updated for both disturbances and WUI
areas (see Figure 6 for example).

[FIGURE 6 ABOUT HERE]

Vegetation changes and impacts on fuels

Changes in the composition and volume of vegetation due to climate change’s impacts have
been discussed in depth by a number of researchers, including Westerling et al. [2], Radeloff et
al. [7], Krawchuk et al. [28], and their importance to estimates of fire intensity has been
discussed more recently in a review article by Bowman et al. [29]. These studies typically
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examine those vegetative changes over time periods of 75 to 150 years, while the current study
is focused on 30 years only. To investigate the size and scope of vegetation changes on a 30
year time period at 30 m horizontal resolution, we originally planned to utilize the Land Use and
Carbon Scenario Simulator [30], a Monte-Carlo based State-and-Transition Simulation Model to
project changes to 14 carbon pools from 2021-2051. While we observed statistically significant
changes in above ground modeled carbon pool volumes over 30 years across CONUS, we
have struggled to accurately translate from those carbon pools to the canopy and surface
vegetation classes needed to drive the fire behavior model we employ in this study. While
research continues on this and several alternate ways of estimating the vegetation and fuel
changes anticipated across CONUS over 30 years in a changing climate, we have elected to
hold the fuels constant between the 2022 and 2052 simulations for the purposes of this study.
Future wildfire exposure estimated by the model described in this study will then be independent
of future vegetation changes, and will depend only on the future weather impacts on the fuel
conditions and fire behavior alone.

Fire Weather and Climate Change

The primary inputs needed to drive the fire spread model are fuels, topography, and weather.
This section details the integration of climate weather into the development of the larger
FSF-WFM. The weather which can drive the growth and distribution of wildfire can be separated
into two categories: 1) the weather before the onset of wildfire that impacts fuels condition by
making the fuels drier or wetter, and 2) the ‘fire weather’ that occurs at ignition, which can
increase intensity and drive fire across the landscape. To represent a wide range of possible
weather-driven fire conditions across the landscape within the simulations employed here, we
used a decade of high spatial and hourly resolution weather data. Wind speed and direction,
relative humidity, and temperature inputs were assembled from the Real Time Mesoscale
Analysis (RTMA) dataset [5] which provides hourly estimates of sensible weather variables on a
2.5 km grid for CONUS. The RTMA surface weather data reanalysis from 2011-2020 was
augmented by Oregon State PRISM (Parameter-elevation Regressions on Independent Slopes
Model) [31] precipitation data to fill in gaps in the RTMA data. Ten years was chosen to
represent a wide range of weather conditions, while overlapping the time period for which the
fuel state is represented (i.e. LANDSFIRE 2016 augmented to 2020). While a 20 or 30 year time
series would provide a more complete sampling of possible meteorological conditions, the 10
year time series does include multiple La Niña and El Niño phases and allows for the
computations to be completed in a reasonable span of time and given the available resources.
Additionally, since this study does not set out to replicate or predict anomalously large or intense
fires (e.g. plume fires)  in a deterministic sense, the Monte Carlo approach used will
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deemphasize those extreme or infrequent conditions and instead emphasizes the much more
frequent medium-large fires (i.e. larger than those that are easily suppressed, but smaller than
the rare extreme fires).

To represent the 2052 weather, we have considered the 2048-2057 time series, created by
scaling the hourly 2022 RTMA time series to forecast 2052 conditions. To do this, we used
International Panel on Climate Change’s (IPCC) Fifth Coupled Model Intercomparison Project
(CMIP5) ensemble results [32] following the Representative Concentration Pathway 4.5 (RCP
4.5), as downscaled within the daily Multivariate Adaptive Constructed Analogs (MACA) v2
product [33] to represent the expected weather conditions in 2052 across CONUS. The RCP 4.5
climate model results were chosen to be relatively conservative in outlook, and to be consistent
with previous and similar work conducted for future flood risk authors [34, 35].

Surface winds were held constant from the 2022 to the 2052 simulation period to preserve the
realistic and high resolution aspects of the 2022 NOAA RMTA  time series in the future, to
reduce uncertainties in future fire behavior and in recognition that future winds are likely to
change far less significantly with climate change than other weather parameters [32, 33]. The
ELMFIRE fire behavior model is necessarily very sensitive to winds, and downscaled climate
model results have difficulty resolving the local and orographic effects in the wind fields to a
sufficient fidelity to support such fire models [36]. Even if they captured the spatial variability
adequately, the high resolution winds generated by an atmospheric model driven by boundary
conditions generated from the climate model outputs would still require extensive verification
and validation to be able to use them for our simulations and justify the results. Since the goal is
not to recreate any particular fire event, but to use the weather time series to support a range of
conditions suitable for Monte Carlo simulation, we concluded that holding the winds constant
from the 2011-2020 time series to drive 2052 fire behavior would be a reasonable approach.

With winds held constant, the other 2022 weather variables undergo scaling to create a
2048-2057 hourly times series used to derive the 2052 wildfire hazards. The MACAv2
downscaled CMIP5 RCP4.5 outputs at daily resolution were used to scale the 2021 RTMA
hourly time series of air temperature, relative humidity, and precipitation by computing bias
adjustments between the present-day 2022 and forecast 2052 conditions. The biases were
distributed throughout the day via a gamma distribution to maintain the diurnal signal in
precipitation and humidity while allowing for the overall scaling to be representative of the
climate change impacts on these variables. Extreme values in biases were adjusted inward
(towards the center of the distributions) to allow for consistent statistics while preserving the
general climate variability. Air temperature adjustments at the hourly resolution were likewise
adjusted with a simpler gaussian distribution that brought daily average values of the 2011-2020
RTMA hourly time series in line with the future 2048-2057 MACAv2 daily values.
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The result for the 2052 weather time series is a 10 year duration, hourly resolution
representation of estimated future weather conditions at 2.5km horizontal resolution that are
characterized predominately by 1.7-2.8 deg C (3-5 deg F) average warmer temperatures across
CONUS. This allows the impact of higher air temperatures from climate change on fuel
conditions in 2052 to be largely isolated and evaluated, since winds and fuels are both held
constant from 2022. The greatest deficiency of this approach is that it is not possible to evaluate
the climate impacts of geographically coherent but temporally variable features such as more
severe or longer droughts, or greater incidences or intensities of atmospheric rivers or
hurricanes. As such, these estimates are limited almost entirely to the effects caused by higher
air temperatures on fuel conditions, and so must be considered an underestimate of the total
possible effects of climate change on wildfire probability. Subsequent versions of this model are
intended to address these deficiencies.

Ignition and spatial fire occurrence patterns

One of the primary indicators of where future fires will occur is informed through historical fire
occurrence data. The spatial component of the fire occurrence model is built from the Fire
Occurrence Database (FOD; https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.5 )
developed by the USDA Forest Service [37, 38]. The FOD includes 27 years (1992-2018) of fire
occurrence data, encompassing 2.17 million georeferenced wildfire records that total 165 million
acres burned. Following best practices for annualized burn probability modeling [18], this
database was filtered to remove small fires, defined as those which are less than 100 acres
(Class A, B, and C fires). We acknowledge the choice of the 100 acre cutoff is somewhat
arbitrary, and different thresholds (e.g. 300 acres [18], 247 acres [39]) have been used in other
research and models, but was chosen as a convenient approximation of the typical scale of
wildfires whose growth are often limited by human fire suppression activities.

A recognized best practice is to develop an ignition density grid using a kernel density tool [18].
The ignition density kernel formula used (see equation below from [40]) was implemented in the
wildfire behavior model to generate the ignition density grid for this work, where r is the search
radius (bandwidth) and di is the distance from point i to the centroid of a given cell.

(2) Density = 1
𝑟2  Σ

𝑖=1
𝑛 3

π  𝑥 (1 −  ( 𝑑𝑖
𝑟 )2) 𝑓𝑜𝑟 𝑑𝑖 <  𝑟
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Modeling temporal fire occurrence patterns

The previous section describes how the spatial fire occurrence is modeled, but it does not
address when large fires may occur. One of the strongest predictors of temporal occurrence of
both the number of large fires and acres burned is National Fire Danger Rating System
(NFDRS) Energy Release Component (ERC) percentile based on fuel model G, or ERC(G)' [41]
(note ERC(G) refers to raw ERC values (Btu/ft2) and ERC(G)' refers to ERC percentiles). ERC
is 4% of the energy per unit area (Btu/ft2) that would be released during a fire. ERC depends on
live and dead fuel loading by size class (as characterized by an NFDRS fuel model) as well as
fuel moisture content of live and dead fuels. Although NFDRS fuel model G, which shows the
best correlation with fire occurrence and burned area, contains loadings across all dead fuel
size classes and live herbaceous / live woody loadings, it has a heavy loading in the 1000-hr
size class. For that reason, ERC(G) is primarily a function of weather conditions over the
preceding 45 days and can be thought of as a measure of intermediate to long term dryness
and being calculated solely from fuel moisture content, ERC is not a function of wind speed,
slope, or spread rate.

Fire occurrence is normally assessed in terms of ERC percentile as opposed to raw ERC
(Btu/ft2) because ERC percentile shows better correlation with fire occurrence and size than raw
ERC, since the same amount of precipitation corresponding to wet conditions in one region may
correspond to dry conditions in another region.

(3) 𝑙𝑜𝑔
10

 𝑛 =  0. 02768 𝑥 𝐸𝑅𝐶 (𝐺)' −  0. 2333

Figure 7 shows the number of large fires in the Western US as a function of ERC(G)'. The data
in Figure 7 are demonstrably well-fit (R2 = 0.94) by the correlation in the equation above [41],
which is used in the wildfire behavior model to calculate fire occurrence from ERC(G)'.

[FIGURE 7 ABOUT HERE]

Wildfire Behavior Model

In the development of the FSF-WFM, we employed the open source wildfire behavior model,
ELMFIRE, which is a highly parallelized model that was used to both simulate fire spread and
quantify the wildland fire hazard via Monte Carlo simulations. ELMFIRE is a Rothermal-based,
level set model used to track boundaries across the landscape based on the numerical solutions
of [42] and is fully described in Lautenberger [43].
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[FIGURE 8 ABOUT HERE]

The overall fire hazard and probability modeling methodology, as shown graphically in Figure 8
and described in this section, is based on Finney et al. [44], best practices described by Scott et
al. [18], and a relatively recent review of simulation-based burn probability modeling [45].
Consequently, the contribution of this work is not developing new techniques or approaches to
fire probability and hazard modeling, but rather implementing computationally efficient and
scalable modeling techniques based on existing fire probability and hazard modeling paradigms
pioneered by the aforementioned authors. These scalable computing techniques make it
possible to conduct CONUS-scale fire probability and hazard simulations at 30 m resolution, in
a reasonable amount of time using commodity-style computational resources. The CONUS
domain was subdivided into 48 km by 48 km tiles, which were likewise surrounded by 8 similar
tiles in a 3x3 grid pattern, to aid in the distributed compute workflow.

Inputs to ELMFIRE include fuels, weather time series, and ignition locations. The ignition
locations were based on historical (1992-2018) fire locations described in the previous section,
and limited to fire sizes of greater than 100 acres. This limitation allows the implicit inclusion of
the effect of human-driven fire suppression activities in the model output to create a “real world”
estimate of fire exposure - i.e. wildfires that are actively prevented from growing large. For
example, the State of Rhode Island has exhibited remarkable fire suppression over the past
decades and has been able to eliminate all fires over 100 acres during the 1992-2018 time
period, driving the effective burn probability in Rhode Island to zero for all properties in our
simulations.

For each ignition location, a weather “draw” was randomly selected for that fire which would be
carried forward many hours in simulation, and could extend anywhere in the 3x3 (144x144 km)
tile domain. Those simulated fires that grew to sufficient size (100 acres) were tracked and the
locations, fire length, and durations were noted. This process was repeated over 100 million
times, and resulted in approximately 8-10 million tracked fires of significance per simulation
(2022 and 2052). The result is a statistically well-characterized set of simulated wildfires from
which the probabilistic exposure of properties and buildings to wildfire hazard based on
likelihood (i.e. burn probability), flame length (i.e. intensity), and ember cast may be derived.
The likelihood of a 30 m pixel burning is the number of times that pixel had ignited over the
course of all simulations. The flame length is a measure of fire intensity, captured as binned
flame lengths (see Table 2) over the distribution of all fires within the pixel, and may be
expressed as the mean, median, or maximum flame length. The ember cast is a binned
measure of the number of times embers, pushed ahead of a simulated fire by the fire weather
time series, land in a pixel and result in an ignition of the fuels in that pixel.
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[TABLE 2 ABOUT HERE]

Fire spread model

The 2D fire simulator ELMFIRE is used here to drive a stochastic fire spread analysis that is
used to generate the CONUS burn probability and hazard estimates. ELMFIRE’s computational
engine is similar to other two-dimensional fire simulators such as FARSITE [46] in that it
calculates surface fire spread rate using the Rothermel surface spread model [47, 48], assumes
that each point along the fire front behaves as an independent elliptical wavelet [49] with length
to breadth ratio determined empirically [50, 48], simulates transition from surface to crown fire
using the Van Wagner criterion [51] (with crown fire spread rates calculated from Cruz et al.
[52]), and models ember-driven ignition or “spotting” as a stochastic process with a lognormal
spotting distance distribution [53, 54]. ELMFIRE tracks the fire front using a narrow band level
set method [55], a numerical technique for tracking curved surfaces on a regular grid.

To demonstrate how ELMFIRE simulates fire spread, Figure 9 shows 24-hours of fire
progression from an individual ignition site. The black contour lines in Figure 9a represent the
fire front position at 2-hour intervals. Figure 9a also shows which parts of the burned area
experienced surface fire (blue), passive crown fire (green), or active crown fire (red). Figure 9b
similarly shows fire perimeter contours and flame length variation within the fire perimeter.
Flame length is highest in areas that burn as heading fires or that experience crown fire and
lowest in areas that burn as a flanking, backing, or surface fire. In this example, the fire area
after 24 hours of spread is approximately 560 acres.

[FIGURE 9 ABOUT HERE]

The Monte Carlo fire spread analysis conducted here involves running millions of fire spread
simulations (similar to that shown in Figure 9) sequentially over many years (2011-2021, and
2048-2057), and across all tiles in the CONUS domain. Each tile is a 144 km by 144 km tile
within CONUS, consisting of a 48 km central tile surrounded by its eight neighboring tiles of the
same size. For each year and tile, fuel, topography, and yearly weather, fuel moisture, and ERC
percentile inputs are assembled. Starting at the beginning of the simulation year, ignition
locations are determined using the spatial and temporal fire occurrence modeling techniques
described earlier. Fires are ignited only in the central 48 km tile, but are allowed to spread into
the adjacent 8 tiles within the simulation. The progression of each fire is modeled for a
randomized spread duration up to 7 days from the time of ignition, to roughly approximate the
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varying duration of observed wildfires.  For each pixel within the modeled fire perimeter, the
burn incidence is recorded, and the binned distributions of discrete ember count and flame
length are also recorded for each pixel. This ignition-burn-record process is repeated for each
day in each simulation year, building up the probabilistic estimates of burn probability, flame
length, and ember spread. Since fires can start in one tile and spread to adjacent tiles, each tile
is post-processed concurrently with its 8 neighbors.

The primary outputs after processing are conventional annualized wildfire hazard maps at 30 m
resolution within CONUS, composed of:

● Burn probability - an estimate of the likelihood that a region on the landscape burns in
any single year during the simulation period.

● Fire intensity - the distribution of conditional (i.e. upon burning) flame lengths for each
pixel, within discrete flame length bins.

● Exposure to embers - Similar to fire intensity, a distribution of ember exposure per pixel
to characterize the relative intensity of ember exposure from all modeled fires.

Validation

To validate the results from the fire behavior model, we compared the model fires against
historical fires’ intensity and size in aggregate. Example results from a tile-by-tile comparison of
modeled and historical are generated as each geographic tile run is shown below. The modeled
fire sizes are larger than in the FOD because (a) there is no fire suppression element applied
within ELMFIRE, and the (b) simulation end time was randomized. To partially compensate for
these limitations, as stated previously, the ignition layer was limited to sources of historical fires
that were a minimum of 100 acres. This assumes that suppression measures would be effective
in keeping such fires small, and of short duration. The resulting comparison of modeled fires’
sizes and intensities (Figure 10) shows that the modeled fires without explicit suppression and
with randomized durations up to 7 days are systematically  larger than the observed wildfires.
The area of nonzero burn probabilities in the resulting hazard layers should therefore be
considered an overestimate of the likely range of wildfire spread, which creates distributions that
err on the side of caution when understanding wildfire exposure (i.e. there are likely fewer false
negatives). The introduction of active fire suppression within the model is the subject of further
research and may be incorporated into future versions.

[FIGURE 10 ABOUT HERE]
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Results

The construction of a national-scale, property-specific wildfire hazard model using an open
source fire behavior model, driven by openly available inputs, has been proven possible by our
development of the FSF-WFM. The ability to extend the wildfire hazard into the WUI by
replacing nonburnable LANDFIRE fuel designations with estimates derived from historical fire
behavior in WUI areas was also shown to be feasible. Using the model in a Monte Carlo
simulation driven by historical ignition locations across CONUS to provide 30 m-resolution
hazards was shown to be practical using commodity-scale computing hardware. This same
scheme was shown to be applicable to both current (2022) and future (2052) scenarios, given
future estimates of climate-adjusted weather conditions.

The results of the FSF-WFM model implementation are freely and publicly available through
riskfactor.com, and show property-by-property assessments of exposure to wildfire hazard.
Figure 11 shows a representative parcel from the over 143 million available, and shows the level
of resolution and discrimination among properties that is available. These results are
summarized at the state level in Tables 3 and 4, and Figures 12A and 12B, which will be
discussed in more detail below.

The spatial variability in the distributions of the hazard at 30m resolution, including within the
WUI and the prevalence of hazard in the Eastern as well the Western U.S., highlight the
importance of understanding wildfire risk at a property level across CONUS. While this paper
focuses on the methodology and defers a thorough analysis of results to a later study, we
present some general results to provide the reader with a sense of feasibility of the FSF-WFM to
address current and future wildfire exposure. Overall, the results estimate that 71.8 million
properties have a burn probability > 0 in the current environment (2022) and that probability
increases by 11% over the next 30 years, and grows to 79.8 million properties in CONUS in
2052.  Many of those properties have low, but nonzero, burn probabilities from the model so we
choose to describe two general levels of wildfire hazard based on a cumulative burn probability
of 3% over the 30 year period, which we label “Any Exposure”, and a cumulative likelihood of
10% over the 30 year period, which we label “Major Exposure”.  When looking at those two
categories, we find about 20.2 million properties in the CONUS being subject to “Any Exposure”
and 5.9 million properties being at “Major Exposure” to wildfire over the 30 year period
(2022-2052). These property counts represent about 15% and 5% of all property parcels in the
CONUS, which further highlights the large exposure of properties in the US to wildfire exposure.
For further context, flooding, which is generally referred to as the most widespread climate peril
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in the US, impacts about 21.8 million properties at the “Any Flood” level (equivalent to 6% 30-yr
aggregate) and about 14.6 million properties at the “Significant Flood” level (equivalent to 26%
30-yr aggregate) [56].

Any Exposure

Table 3 and Figure 12A report the results of the model when applied against individual property
structures and parcel centroids (on parcels without buildings). The results indicate that the top 5
states in regards to “Any Exposure” are Texas, Florida, California, North Carolina, and Alabama.
In those 5 states alone, there are nearly 30 million properties with at least a 1% cumulative
probability over the next 30 years of being impacted by a wildfire. Figure 12A (upper) further
illustrates that the distribution of properties “Any Exposure” of wildfire are disproportionately
located in Texas, California, and the Southeastern US. When taking into account “Any
Exposure” of wildfire relative to the total housing stock in Figure 12A (lower), the Mountain West
states of Montana, Idaho, Wyoming, and Utah emerge as a cluster of disproportionate potential
impact along with New Mexico, Oklahoma, Mississippi, and Alabama across the southern tier of
the country. The Midwest and Northeast are relatively lower in regards to “Any Exposure” to
wildfire over the next 30 years, which is expected given the climate conditions that generally
drive the peril.

[TABLE 3 and FIGURE 12A ABOUT HERE]

Major Exposure

Table 4 and Figure 12B report the results for only those properties at “Major Exposure” to
wildfire (3% cummulative likelihood over the 30 year period). When only looking at this subset of
properties, California stands out as having the most exposure with over 2.5 million properties in
this category. Texas, Florida and Arizona, at 1.7, 1.5, and nearly 1 million properties at “Major
Exposure” respectively, together with California account for over 6.5 million properties that meet
the threshold of having at least 3% cummulative wildfire exposure over the next 30 years.
Figure 12B (upper) highlights the fact that when shifting from “Any Exposure” to “Major
Exposure”, the majority of that exposure is held in the Western US, with Florida, Mississippi,
New Jersey, and North Carolina standing out as states in the eastern half of the country with
higher levels of exposure than surrounding areas. Figure 12B (lower) shifts that impact slightly
when accounting for the exposure as a proportion of properties in the state. Using that metric,
Arizona, Utah, and Wyoming carry the most exposure to wildfire hazard, followed by their
western neighbors California and Nevada.

[TABLE 4 and FIGURE 12 ABOUT HERE]
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The estimated geographic distribution of change in wildfire exposure due to climate change is
shown in Figure 13. The percentage increase between the current year and 30 years into the
future in the average burn probabilities of properties with at least 0.03% risk is at least 100% in
many of the counties across the country. The annual burn probability of 0.03% corresponds to at
least a 1% cumulative likelihood over a 30 year period. With higher burn probabilities, a higher
incidence of losses is expected over time as properties are exposed more often to wildfire.

[FIGURE 13 ABOUT HERE]

Finally, a Fire Factor risk assessment was created on a property-level basis across CONUS.
Property parcel geometries are provided by the Lightbox public-record property boundaries
database. Building footprint geometries are defined by Mapbox. First Street performed a
geometric intersection to match parcels to building footprints. Footprints that cross parcel
boundaries were subdivided, such that no footprint geometry crosses parcel boundaries. Since
some parcels intersect multiple footprint geometries, the building footprint with the largest area
was designated the primary footprint.

To evaluate the exposure to wildfire flames and embers, each hazard layer was queried at the
geometric centroid of each building footprint and parcel. For scoring purposes, at properties with
a building footprint the statistic at the primary footprint centroid was recorded; for parcels without
a building footprint the parcel centroid was recorded. The assignment of a 30-year,
climate-adjusted aggregated wildfire risk score was then computed by calculating the likelihood
and nature of exposure through burn probabilities and belongingness in an ember zone for a
building or parcel as representative of the risk for each property for 2022 and then for 2052, and
then linearly interpolating across that 30 year period.

The annual risk as defined by burn probability and belongingness in an ember zone for each
year was summed across the 30-year period and was used to derive the total chance of
exposure over that 30 year period which includes climate change effects. The Fire Factor
scoring rubric is included in Table 5.

[TABLE 5 ABOUT HERE]

Assumptions and Limitations

The wildfire hazard estimates from the methodology described in this research paper offer
insights into the current and future wildfire exposure at 30 m resolution across CONUS, using
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widely accepted input layers from LANDFIRE and using the Rothermal-based ELMFIRE fire
behavior model that has already undergone peer-review and validation. The resulting estimates
of wildfire hazard exposure provide a first view of national level, high precision, property-level
exposure estimates across the US in a framework that takes into account both current and
future changing exposure to wildfire.  The results identify at least some level of exposure in
many places that are generally not thought of as having a wildfire problem, but they also
underscore the fact that there is a tremendous amount of “Major Exposure” in the Western US,
and specifically in the WUI areas in California and the Mountain West States. These insights are
intended to complement the work done by the WRC program by providing a property-level
equivalent to the community level tool already in the public domain, using similar but
independent Rothermel-based fire behavior modeling.  Nevertheless, there are a number of
acknowledged limitations in our methodology, many of which have already been noted but the
implications of which are discussed below:

● Lack of Explicit Fire Suppression - since the fire behavior model ELMFIRE does not
explicitly include suppression effects, the model tends to overestimate the size and
intensity of wildfires, which leads to an overestimate of the extent of wildfire exposure.

● Variable length of wildfire burn time - ELMFIRE randomizes the length of the time for
each modeled wildfire, leading to overestimates in the size and intensity of wildfires. The
amount of time and the number of simulated fires needed to drive the Monte Carlo
simulation towards stable statistics varies geographically across the model domain.

● Extremely large fires - the simulation method does not capture the behavior of extremely
large fires, since the fire weather forcing the simulation is not coupled with the fire
behavior model.

● House to House ignition - while the replacement of the non-burnable fuels in the
LANDFIRE representation of the WUI with estimates of burnable fuels allows wildfires to
propagate through the WUI more accurately, the ignition and subsequent contribution to
wildfire by the buildings/houses themselves to the hazard within the WUI is not yet
included in FSF-WFM.

● Vegetation changes - the vegetation between 2022 and 2052 was held constant,
although it is anticipated that changes in vegetation composition and density – and thus
fuels – will be driven to some degree by climate change. Keeping the 2022 fuels
constant for the assessment of 2052 future exposure underestimated the total possible
changes due to climate, but focuses attention on the direct effects of climate and future
weather on the state of those fuels, which has significant implications for wildfire
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ignitions, intensity, and spread.

● Future weather approximation - A comprehensive sensitivity analysis to the
bias-adjustment techniques used for climate adjustment is warranted. Also, the
high-quality of the winds in the 2048-2057 simulations (the same as the 2011-2022
observations) is an advantage over using modeled winds, but is nevertheless an
assumption. Most importantly, since the length and severity of droughts captured in the
2011-2020 time series do not change for the 2048-2057 simulation, the possible impact
of those droughts as they increase in frequency and severity iis unresolved.

● Incomplete fuels/disturbances for fuel updates - disturbances are not evenly reported
across the US, and some areas (e.g. private lands in the Eastern US) are not well
known.

● Ignition locations - using only historical fire ignition locations limits the possible impact of
climate change on plausible fire locations, and the omission of random lightning strikes
leaves some areas under-sampled. Additionally, a nuance of the decision to build the
ignition density surface from only > 100 acre fire occurrence data is that ignition density
will be zero in areas that have not experienced fires > 100 acres, even if those areas
have experienced fires < 100 acres. Dillon et al. [39] noted that in areas where
management strategies have previously been successful at limiting large fire occurrence,
burn probability modeling based only on large fire occurrence may underestimate burn
probability. For that reason, Dillon et al. [39] developed an ignition density surface
weighted as 98% large fire occurrence and 2% small fire occurrence, and such an
approach could likely be used in future work.

● No future land use changes - to focus on the impacts of climate change on existing
parcels under future wildfire exposure, we have elected to keep the built environment
constant, and to assume no changes in land use or condition. This simplifying
assumption is useful for its stated purpose, but we also recognize that changes in land
use will also precipitate changes in likely future ignition locations, WUI locations, fuel
conditions and types.

Discussion and Concluding Points

The methodology presented computes the physical hazard associated with wildfire incidence for
the contiguous United States at 30 meter resolution, and is expressed through hazards
quantifying burn probability, flame length, and ember spread for the years 2022 and 2052 based
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on 10-year representative Monte Carlo simulations of wildfire behavior. This methodology uses
updated fuels estimates that integrate known disturbances, current and estimated future
weather characteristics useful for understanding aggregate wildfire exposure at a high
resolution, and uses a model of wildfire behavior that integrates ignition, time of burn, and
spread. This work does not develop new techniques or approaches to fire probability and
hazard modeling, but rather integrates several existing methods and implements a
computationally efficient and scalable modeling techniques to allow for new high-resolution,
CONUS-wide hazard generation – all based on existing data, fire science, and hazard modeling
paradigms developed by others in the wildfire science community. We have extended these
approaches to estimate not only updated, current wildfire hazard but also extending those to
estimate climate change’s future impacts on that hazard.

The methodology for the augmentation of the US Forest Service’s LANDFIRE-based estimates
of fuel types, densities, and conditions at a 30m resolution is presented using an open-source,
Rothermel-based wildfire behavior model, ELMFIRE, for computation. The  replacement of
nonburnable fuel types in LANDFIRE representing the built environment within the Wildland
Urban Interface (WUI) with fuel inputs from the results of machine-learning estimates trained on
data from historical fires allow the propagation of wildfire through the WUI in a way that more
closely resembles observed conditions, and often results in nonzero burn probabilities for these
areas. This serves as a notable improvement and opportunity for future fire models to replicate
such an approach to improve their modeling. The wildfire hazard derivation overall is heavily
dependent upon the updated LANDFIRE 2016 fuel layers, and significant effort was undertaken
to assemble all known disturbances through 2020. Combined, this provides a repeatable
methodology for future research looking to incorporate current fuel estimates when annually
updated LANDFIRE data are not available.

Other inputs required for ELMFIRE include topography from the USGS National Elevation
Database, and weather (winds, air temperatures, humidity, and precipitation) for which the
2011-2020 NOAA RTMA hourly time series was selected. This 10-year time series provided an
adequate range of possible weather conditions for the Monte Carlo simulation, where ELMFIRE
was run approximately 100 million times to produce an estimate of the 2022 wildfire hazards for
CONUS. To enable an estimate of the future hazard, this same hourly time series was
bias-adjusted using MACAv2 daily downscaled IPCC CMIP5 RCP4.5 climate model ensemble
results. Since accurate winds are crucial to the accurate prediction of wildfire behavior, and
winds have a direct and significant influence on ELMFIRE results, we elected to hold winds
constant between the 2022 and 2052 simulations, and bias-adjust only air temperature,
humidity, and precipitation. This choice reduced the uncertainties introduced into the hazards
from the fire behavior model, and instead focuses on the impact of climate change on the
condition of the fuels for the 2048-2057 Monte Carlo simulations. Vegetation was likewise held
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constant between the 2022 and 2052 Monte Carlo simulations, as a reasonable but
conservative approximation over 30 years time. The differences in wildfire hazards in the 2052
estimates are then based solely upon climate’s impact on the state of the fuels - and generally
hotter, drier conditions are seen to influence greater burn probabilities in the 2052 estimates.
Due to the vegetation being held constant, these 2052 estimates should be considered
conservative estimates of future wildfire exposure.

Fire ignition locations for the simulations were kept the same for 2011-2020 as for the
2048-2057 Monte Carolo simulations, and were created from the historical origins of significant
fires greater than 100 acres. This lower limit on fire size was used to implicitly account for fire
suppression activities that are not currently modeled in ELMFIRE. Over 100 million fires were
modeled for each simulation period, and 8-10% of those model fires grew and were tracked at
30m resolution across the landscape for up to 7 days apiece. Outputs were aggregated to
create burn probability, flame length, and ember spread hazard estimates at 30m horizontal
resolution for CONUS. These hazard estimates are conducive with assessing the exposure of
properties on US to wildfire flames and/or embers. Comparisons with historical wildfire
intensities and sizes show that the lack of explicit fire suppression effects in the FSF-WFM
produces overestimates of fire sizes and intensities, so the resulting wildfire hazards should be
considered to be conservative overestimates.  Comparison to historical wildfire losses and the
US Forest Service’s WFC products generally show consistency at the state and community
levels, but additional validation using historical  losses at the building level should be
undertaken in the future. The FSF-WFM wildfire hazards will produce fewer false negatives of
risk assessments at the property level, and when combined with specific building vulnerability,
could be used to provide similarly conservative estimates of climate-adjusted wildfire losses at
the building level.

Wildfire hazards are estimated to be nonzero for 71.8 million of the over 140 million properties in
CONUS, and will include an additional 11% properties over the next 30 years due to climate
change impacts on fuel conditions. While most of the overall wildfire risk is associated with
properties west of 100 degrees W longitude in the American West, much of the change in
wildfire exposure is observed east of the Mississippi River in areas not normally associated with
large wildfire exposure. Over 5.9 million properties are found to have a “major” aggregate
wildfire exposure of 10% over the 30 year analysis period from 2022-2052, which invites further
investigation at the hyper-local level to discover ways to mitigate that exposure. Since the fuels
and winds have been held the same between 2022 and 2052 in our simulations, the implication
is that the increase in exposure is due to future weather’s increased air temperatures impacts
on fuel conditions is the primary cause of the increase in wildfire exposure throughout the
country.
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The FSF-WFM represents the first national-scale, property-level wildfire exposure model that
has been developed using a geographically-consistent approach. The ability to consistently
assess wildfire exposure and thus risk for every property across the CONUS should give local,
state, and national government decision makers another data tool to help guide the allocation
resources, allow property owners to better assess their risk and implement meaningful solutions
to reduce that risk, and provide financial markets that opportunity to price risk into the cost of
property more effectively through insurance, mortgage, and other financial products.

Data distribution

The resulting FSF-WFM hazard layers and associated property-specific vulnerability and
economic assessments will be freely and publicly available for noncommercial use at
https://riskfactor.com. The public availability of this climate information is meant to inform the
public, enable new research efforts on wildfire risk, level the playing field with private
commercial interests that already have access to this kind of information, and help address the
privatization of climate impacts information.
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TABLES

Table 1. Distribution of Disturbance Types and Severity

Disturbance Type %

Fire 92.8%

Mechanical add 0.2%

Mechanical reduce 5.8%

Other 1.2%

Disturbance Severity

Low 65.0%

Medium 20.2%

High 14.8%

Table 2 - Hazards quantified by the FSF-WFM: following the ELMFIRE simulations for
2021 and 2051, the wildfire hazard for any 30m pixel within the CONUS domain is
represented by the combination of the burn probability, mean or maximum flame length
(intensity), and exposure to embers.

Measure of Exposure Description Units

Burn Probability Likelihood that a pixel
catches fire out of all the
simulations normalized by
likelihood of ignitions.

%

Max Flame Length -Maximum flame length
experienced at a pixel across

ft
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all simulations

Sum of Flame Length Sum of flame length for all
simulations that experience
fire

ft

Mean Flame Length Sum of flame length divided
by times burned

ft

Binned Counts of Flame
Lengths

(0,2,4,6,8,12,20,+) ft

Ember Flux Dimensionless number that is
a proxy for the count of
embers landing in a pixel.
Does not reflect mass of
embers, whether they are still
burning, or distance traveled.

<none>

Ember Likelihood Likelihood that an ember falls
into a pixel across all
simulations, similar to times
burned

%

Max Embers Max number of embers count
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Table 3. Top 25 State Ranking by “Any Risk” (cumulative burn probability of >1%)

State Total Properties Any Risk Pct Any Risk

Texas 11,957,707 9,450,091 79.03

Florida 8,975,280 7,197,685 80.19

California 11,341,383 7,131,849 62.88

North Carolina 5,451,278 3,126,130 57.35

Alabama 3,019,300 2,727,455 90.33

Georgia 4,413,839 2,482,091 56.23

Arizona 3,225,763 2,463,019 76.35

Virginia 3,795,418 2,265,927 59.70

South Carolina 2,616,091 2,068,048 79.05

Colorado 2,491,610 2,000,321 80.28

Oklahoma 2,215,755 1,901,850 85.83

Tennessee 3,278,739 1,879,316 57.32

New Jersey 3,449,541 1,859,395 53.90

Mississippi 1,904,494 1,695,462 89.02

Arkansas 1,923,556 1,558,005 81.00

Missouri 3,191,502 1,503,143 47.10

Minnesota 2,964,708 1,472,206 49.66

New Mexico 1,495,392 1,380,736 92.33

Louisiana 2,365,207 1,254,936 53.06

Utah 1,363,463 1,153,356 84.59

Kansas 1,633,521 1,087,988 66.60

New York 5,376,613 999,217 18.58

Washington 3,031,769 996,960 32.88

Oregon 1,807,336 911,745 50.45

Idaho 1,036,925 878,068 84.68
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Table 4.  Top 25 State Ranking by “Major Risk” (cumulative burn probability of >3%)

State Total Properties Major Risk Pct Major Risk

California 11,341,383 2,554,777 22.53

Texas 11,957,707 1,686,571 14.10

Florida 8,975,280 1,540,413 17.16

Arizona 3,225,763 998,241 30.95

Oklahoma 2,215,755 451,928 20.40

Utah 1,363,463 425,163 31.18

New Mexico 1,495,392 409,538 27.39

Nevada 1,209,308 314,203 25.98

Idaho 1,036,925 196,014 18.90

Washington 3,031,769 187,275 6.18

Colorado 2,491,610 177,081 7.11

New Jersey 3,449,541 171,568 4.97

Montana 894,052 167,040 18.68

South Dakota 666,388 164,702 24.72

Mississippi 1,904,494 121,367 6.37

Wyoming 339,209 113,570 33.48

North Carolina 5,451,278 96,774 1.78

Kansas 1,633,521 81,309 4.98

Oregon 1,807,336 70,680 3.91

Alabama 3,019,300 53,726 1.78

Nebraska 1,138,191 50,150 4.41

South Carolina 2,616,091 46,292 1.77

North Dakota 679,023 33,737 4.97

Louisiana 2,365,207 23,783 1.01

Minnesota 2,964,708 19,929 0.67
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Table 5. Fire Factor Assignment

Fire Factor Represents properties

1 With no modeled exposure of being in a wildfire (burn probability) and
with no modeled exposure to embers (including not being in an ember
zone) are considered to have minimal risk.

2 Located in areas exposed to embers through the created ember zone or
in an area with less than a 1% cumulative chance of burning over 30
years.

3 With 1-3% chance of burning over 30 years.

4 With a 4-6% chance of burning over 30 years.

5 With a 7-9% chance of burning over 30 years.

6 With a 10-14% chance of burning over 30 years.

7 With a 14-20% chance of burning over 30 years.

8 With a 21-26% chance of burning over 30 years.

9 With a 27-36% chance of burning over 30 years.

10 With more than a 36% chance of burning over 30 years.
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FIGURES

Figure 1. The modifications of the LANDFIRE v2.0.0 fuels (LF) include use of Disturbance data
(FVC Fuel Vegetation Cover; FVH - Fuel Vegetation Height; FVT - Fuel Vegetation Type; BPS -
Biophysical Settings) to modify surface (FM40) and canopy fuel classes (Canopy Cover CC;
Canopy Height CH; Canopy Base Height CGH; Canopy Bulk Density CBD), and the
replacement of non-burnable fuel classes in the WUI with fuel classes that were found to
approximate observed fire behavior in past WUI fires. Computation was done using Google
Earth Engine (EE).

3,4 This figure represents steps 1 & 2 in the fuels methodology, Steps 3 & 4 are included in Figure 4.
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Figure 2. Disturbances: Locations of Updated Canopy and Surface Fuels
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Figure 3. Modified surface fuel estimates: (Left) LANDFIRE 2016 canopy cover (green)
and identified disturbances 2017-2020 (gray) are shown. (Right) New canopy cover
estimates (green) are reduced in disturbed areas.
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Figure 4. Random forest model training and classification to replace non-burnable FM40
classes with burnable classes in the newly defined WUI
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Figure 5. WUI FM40 random forest importance values.
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Figure 6. Classification of Building Structures from Unburnable to Burnable Fuel Types
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FIgure 7. Number of fires in the Western US as a function of ERC(G) percentile
(reproduced from Riley et al, 2013).
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Figure 8. Wildfire Behavior Model, Process Diagram. The “Fire Factor” result on the right
hand side is an expression of wildfire hazard as a function of burn probability, flame
length, and ember presence and is available for viewing for every property in the U.S. at
riskfactor.com .
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Figure 9. Example ELMFIRE fire spread simulation for individual fire ignition. (a) Fire type
(surface fire, passive crown fire, or active crown fire). (b) Flame length in feet.

(
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Figure 10. Historical and modeled fire sizes (in acres) versus intensity (flame length in ft).
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Figure 11. From riskfactor.com: (Bottom) A representative description of property-level
exposure (Winding Cypress, FL), showing the high-resolution, property-specific nature of
the estimates that are produced by the FSF-WFM. Colors depict the probability (%) at
30m resolution of being impacted by wildfire hazard during the year 2022. The likelihood
numbers at right are estimates of annual likelihood of wildfire for the property at the red
pin (center), and which is seen to more than double by 2052. (Top) CONUS Burn
Probability at 30m resolution for 2022; gray areas show areas with negligible exposure.
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Figure 12A. Geographic Distribution of “Any Exposure” to Wildfire (>1% Cumulative Exposure):
those individual properties with >1% cumulative exposure over 2022-2052 were counted on a
state by state basis, and compared to the total number of all properties.
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Figure 12B. Geographic Distribution of “Major Exposure” to Wildfire (>3% Cumulative
Exposure): those individual properties with >3% cumulative exposure over 2022-2052
were counted on a state by state basis, and compared to the total number of all
properties.
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Figure 13. Percent Increase in annual likelihood of wildfire exposure among properties
with at least 0.03% annual likelihood of wildfire exposure
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